Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Divers ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37389778

RESUMO

Tyrosine Kinase beta (TRKß), is a type I membrane receptor which plays a major role in various signalling pathways. TRKß was found to be upregulated in various cancers and contrastingly downregulated in various neurodegenerative disorders. Hitherto, contemporary drug research is oriented towards discovery of TRKß inhibitors, thus neglecting the development of TRKß agonists. This research is aimed at identifying FDA approved drugs exhibiting repurposable potential as TRKß agonists by mapping them with fingerprints of the BDNF/TRKß interaction interface. Initially, crucial interacting residues were retrieved and a receptor grid was generated around it. TRKß agonists were retrieved from literature search and a drug library was created for each agonist based on its structural and side effect similarities. Subsequently, molecular docking and dynamics were performed for each library to identify the drugs possessing affinity towards the binding pocket of TRKß. The study revealed molecular interactions of Perospirone, Droperidol, Urapidil, and Clobenzorex with the crucial amino acids lining the active binding pocket of TRKß. Subsequent network pharmacological analysis of the above drugs revealed their interactions with key proteins involved in neurotransmitter signalling pathways. Clobenzorex displayed high stability in dynamics simulation and therefore this drug is recommended for further experimental evaluations to attain better mechanistic insights and predict its implications in correcting neuropathological aberrations. This study's focus on the interaction interface between TRKß and BDNF, combined with the utilization of fingerprint analysis for drug repurposing, contributes to our understanding of neurotrophic signalling and holds potential for identifying new therapeutic options for neurological disorders.

2.
Neurotox Res ; 39(5): 1405-1417, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34279823

RESUMO

Described as amphetamine-like due to their structural and stimulant similarities, clobenzorex is one of the five most-commonly used drugs in Mexico for the treatment of obesity. Various studies have shown that amphetamines induce dopaminergic neurotoxicity and neuroinflammation in the striatum, symptoms which are associated with motor damage. For this reason, the present study aimed to evaluate the effect of chronic clobenzorex administration on motor behaviors, TH immunoreactivity, gliosis, and the neurodegenerative process in the striatum and substantia nigra pars compacta (SNpc). The present research was conducted on three experimental groups of male Wistar rats: the vehicle group, the amphetamine group (2 mg/kg), and the clobenzorex group (30 mg/kg). All groups were subject to oral administration every 24 h for 31 days. Motor activity and motor coordination were evaluated in the open field test and the beam walking test, respectively. The animals were euthanized after the last day of treatment to enable the extraction of their brains for the evaluation of tyrosine hydroxylase (TH) levels, the immunoreactivity of the glial cells, and the neurodegeneration of both the striatum and SNpc via amino-cupric-silver stain. The results obtained show that amphetamine and clobenzorex administration decrease motor activity and motor coordination in the beam walking test and cause increased gliosis in the striatum, while no significant changes were observed in terms of immunoreactivity to TH and neurodegeneration in both the striatum and SNpc. These results suggest that the chronic administration of clobenzorex may decrease motor function in a manner similar to amphetamine, via the neuroadaptive and non-neurotoxic changes caused to the striatum under this administration scheme.


Assuntos
Anfetaminas/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Gliose/induzido quimicamente , Atividade Motora/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Administração Oral , Anfetamina/administração & dosagem , Anfetamina/toxicidade , Anfetaminas/toxicidade , Animais , Corpo Estriado/patologia , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/toxicidade , Neurônios Dopaminérgicos/patologia , Esquema de Medicação , Gliose/patologia , Masculino , Atividade Motora/fisiologia , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Neuroglia/patologia , Ratos , Ratos Wistar
3.
Med Sci (Basel) ; 7(3)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818849

RESUMO

Anorexigenics are compounds capable of reducing or suppressing appetite. Their three main types act on different neurotransmitters, either norepinephrine, serotonin or a combination of both. Among the drugs that act on norepinephrine are fenproporex, amfepramone and clobenzorex. Derivatives of the thyroid hormone triiodothyronine have also been associated with weight loss and used as a controversial treatment for obesity, despite their known cardiovascular side effects. Recent data suggest a possible vasodilating effect for these four substances that might be beneficial in a subset of patients. Herein we performed a systematic review of the literature (with emphasis on recent reports) to determine the implications and mechanisms of the vasodilating effects of some anorectics, specifically fenproporex, clobenzorex, amfepramone and triiodothyronine. Data analysis showed these four drugs to be vasodilating agents for rat aortic rings. The different mechanisms of action include endothelium-dependent vasodilation via activation of the NO-cGMP-PKG pathway and the opening of calcium-activated potassium channels. The finding of vasodilating activity indicates a potential role for some anorexigenic drugs in the treatment of obesity in hypertensive patients. Further in vivo studies are needed to test the clinical benefits of these four drugs.

4.
Braz. j. med. biol. res ; 50(9): e5765, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-888990

RESUMO

Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10-9-10-5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-dependent vasorelaxant effect at the higher concentrations (10-7.5-10-5 M). The present outcome was not modified by 10-6 M atropine (an antagonist of muscarinic acetylcholine receptors), 3.1×10-7 M glibenclamide (an ATP-sensitive K+ channel blocker), 10-3 M 4-aminopyridine (4-AP; a voltage-activated K+ channel blocker), 10-5 M indomethacin (a prostaglandin synthesis inhibitor), 10-5 M clotrimazole (a cytochrome P450 inhibitor) or 10-5 M cycloheximide (a general protein synthesis inhibitor). Contrarily, the clobenzorex-induced vasorelaxation was significantly attenuated (P<0.05) by 10-5 M L-NAME (a direct inhibitor of nitric oxide synthase), 10-7 M ODQ (an inhibitor of nitric oxide-sensitive guanylyl cyclase), 10-6 M KT 5823 (an inhibitor of protein kinase G), 10-2 M TEA (a Ca2+-activated K+ channel blocker and non-specific voltage-activated K+ channel blocker) and 10-7 M apamin plus 10-7 M charybdotoxin (blockers of small- and large-conductance Ca2+-activated K+ channels, respectively), and was blocked by 8×10-2 M potassium (a high concentration) and removal of the vascular endothelium. These results suggest that the direct vasorelaxant effect by clobenzorex on phenylephrine-precontracted rat aortic rings involved stimulation of the NO/cGMP/PKG/Ca2+-activated K+ channel pathway.


Assuntos
Animais , Masculino , Ratos , Anfetaminas/farmacologia , Aorta Torácica/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Vasodilatação , Vasodilatadores/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Ratos Wistar
5.
Forensic Sci Rev ; 5(2): 109-27, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26270078

RESUMO

Analysis and interpretation of amphetamine results is a challenging process made difficult by a number of factors. One of the complications comes from determination of the origin of amphetamine or methamphetamine in a sample. Given the relatively rare occasions that either of these two drugs are prescribed, legal prescription of one of these drugs is seldom a reason for positive findings. A number of other precursor compounds are metabolized by the body to amphetamine or methamphetamine, many of which could be used for legitimate reasons. Fourteen different metabolic precursors of amphetamine or methamphetamine are included in this review. They are amphetaminil, benzphetamine, clobenzorex, deprenyl, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, and prenylamine. Medical use, metabolism, analysis, and interpretation are described to afford sufficient information to evaluate the possible involvement of these drugs in positive amphetamine or methamphetamine results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...